Second Order Statistical Behavior of LLL and BKZ

نویسندگان

  • Yang Yu
  • Léo Ducas
چکیده

The LLL algorithm (from Lenstra, Lenstra and Lovász) and its generalization BKZ (from Schnorr and Euchner) are widely used in cryptanalysis, especially for lattice-based cryptography. Precisely understanding their behavior is crucial for deriving appropriate key-size for cryptographic schemes subject to lattice-reduction attacks. Current models, e.g. the Geometric Series Assumption and Chen-Nguyen’s BKZsimulator, have provided a decent first-order analysis of the behavior of LLL and BKZ. However, they only focused on the average behavior and were not perfectly accurate. In this work, we initiate a second order analysis of this behavior. We confirm and quantify discrepancies between models and experiments —in particular in the head and tail regions— and study their consequences. We also provide variations around the mean and correlations statistics, and study their impact. While mostly based on experiments, by pointing at and quantifying unaccounted phenomena, our study sets the ground for a theoretical and predictive understanding of LLL and BKZ performances at the second order.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improved Progressive BKZ Algorithms and Their Precise Cost Estimation by Sharp Simulator

In this paper, we investigate a variant of the BKZ algorithm, called progressive BKZ, which performs BKZ reductions by starting with a small blocksize and gradually switching to larger blocks as the process continues. We discuss techniques to accelerate the speed of the progressive BKZ algorithm by optimizing the following parameters: blocksize, searching radius and probability for pruning of t...

متن کامل

Probabilistic Analysis of LLL Reduced Bases

Lattice reduction algorithms behave much better in practice than their theoretical analysis predicts, with respect to both output quality and runtime. In this paper we present a probabilistic analysis that proves an average-case bound for the length of the first basis vector of an LLL reduced basis which reflects LLL experiments much better. Additionally, we use the same method to generate aver...

متن کامل

A Polynomial Time Version of LLL With Deep Insertions

Lattice reduction algorithms have numerous applications in number theory, algebra, as well as in cryptanalysis. The most famous algorithm for lattice reduction is the LLL algorithm. In polynomial time it computes a reduced basis with provable output quality. One early improvement of the LLL algorithm was LLL with deep insertions (DeepLLL). The output of this version of LLL has higher quality in...

متن کامل

PotLLL: a polynomial time version of LLL with deep insertions

Lattice reduction algorithms have numerous applications in number theory, algebra, as well as in cryptanalysis. The most famous algorithm for lattice reduction is the LLL algorithm. In polynomial time it computes a reduced basis with provable output quality. One early improvement of the LLL algorithm was LLL with deep insertions (DeepLLL). The output of this version of LLL has higher quality in...

متن کامل

A Measure Version of Gaussian Heuristic

Most applicable lattice reduction algorithms used in practice are BKZ (Block-Korkine-Zolotarev) type algorithms as the blockwise generalizations of the LLL algorithm (Lenstra-Lenstra-Lovasz). Its original version was proposed by Schnorr and Euchner in 1991. The quality of reduced lattice bases is measured by the Hermitian factor ||b1|| vol(L)1/d and the d-th root of this factor which is called ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017